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▪ Detection and identification of active areas (where? 
what? )

▪ Monitoring to alert on possible risks (when? ) 

▪ Understanding the influence of different forcings
(meteorological, climatic, tectonic) (why? )

How can seismology help to understand environmental 
processes ?
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DETECTION | CLASSIFICATION

Supervised classification : 

Which algorithms ?

Which features ?

Many constraints :

▪ Robust, versatile, portable to different contexts and for different sources

▪ Able to be trained with few examples

▪ Able to produce a very high rate of good identification even with a reduced network (1 or 2 sensors, 1 
component)

▪ Able to be efficient with sometimes very unbalanced data sets

How to find rare events in continuous 
streams of data ?

Objective : Find rare events in 
continuous data

▪ Restrospectively 

▪ In real-time



DETECTION | CLASSIFICATION

Testing ensemble algorithms + curated features

Local scale :

▪ Super-Sauze [Provost et al., 2017] – 4 classes, ~900 
eve. Success rate : 90%

▪ Piton de la Fournaise volc. [Maggi et al., 2017; Hibert 
et al., 2017] – 2-8 classes, 13000+ eve. :  90-95+%

▪ La Clapière – 4 classes, ~11100 eve. : 92%

▪ Séchilienne – 4 classes, ~130000 eve. : 91%

▪ Knipovich Ridge [Domel et al., 2023] : 87%

Regional scale :

▪ Alaska [Hibert et al., 2019]

▪ Alps : WIP [Groult et al., in prep.] > ANR HighLand

▪ Greenland [Pirot et al., 2023]

Processing streams of data :

▪ Illgraben/Piz Cengalo [Wenner et al., 2021; Chmiel et 
al., 2021]: 80-90%

▪ DAS [Huynh et al., 2022; in prep.] : 87%

▪ Super-Sauze  [Rimpot et al, in prep.]
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▪ Dense network of 50 seismic stations 

▪ Deployed from the 18th of June, 2016 to the
17th of July, 2016

▪ 6790 detected events

▪ 5 classes dominated by noise

▪ Each event is seen by > 20 stations

▪ Strongly unbalanced : > 75% Noise

Dense Nodes Network : Super-Sauze Landslide

CLASSIFICATION | CONTINUOUS DATA

Rimpot et al. 



▪ 1s-sliding windows of 18s-length 

▪ + 1 000 000 background noise windows

▪ XGBoost on the sub-dataset :

▪ Trainset : 2500 windows / Classes

Dataset - Windowed catalogue

CLASSIFICATION | CONTINUOUS DATA

Rimpot et al. 

MQ SLF

RF



CLASSIFICATION | SELF-SUPERVISED



Manual initial catalogue = subjective, based on a 
priori knowledge on the classes, not 
comprehensive = bias 

Can we remove the need to have an initial catalogue ?
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Simple Siamese network (SimSiam) 
[Chen & He, 2021]

SimSiam +++

✓ No need for large batches

✓ No need for negative sample pairs

Manual initial catalogue = subjective, based on a 
priori knowledge on the classes, not 
comprehensive = bias 

Self-supervised learning :

- Needed to processes unlabelisable 
datasets

- Can achieve high scores with few 
examples

- Can find rare and « exotic » events

BYOL [Grill et al., 2020], DeepClusterV2, DINO, SwAV [Caron et al., 
2020a, 2020b, 2021], MoCo, SimCLR [Chen et al., 2020a, 2020b], …



CLASSIFICATION | SELF-SUPERVISED

Self-supervised Learning

Classes
Nbr 

Events

Volcano-Tectonic earthquakes 
(VT)

2 008

Hydro-Acoustic signals (HA) 1 626

Mayotte volcano - REVOSIMA catalogue
▪ 2 stations : IF07C & IF07D 
▪ From 1/10/19 to 19/11/19

HD images 256 x 256 Data transformation

ResNet18

Pretrained on 
ImageNet100

Simple Siamese network (SimSiam) 
[Chen & He, 2021]

30 s



CLASSIFICATION | SELF-SUPERVISED

Self-supervised Learning

Mayotte volcano - REVOSIMA catalogue
▪ 2 stations : IF07C & IF07D 
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SimSiam = 512D
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Self-supervised Learning

Mayotte volcano - REVOSIMA catalogue
▪ 2 stations : IF07C & IF07D 
▪ From 1/10/19 to 19/11/19

SimSiam = 512D

t-distributed stochastic neighbor embedding [Van der Maaten & Hinton, 2008]
density-based spatial clustering of applications with noise [Ester et al., 1996]

DBSCAN = Clusters

t-SNE = 2D
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Self-supervised Learning

Mayotte volcano - REVOSIMA catalogue
▪ 2 stations : IF07C & IF07D 
▪ From 1/10/19 to 19/11/19



CLASSIFICATION | SELF-SUPERVISED

Self-supervised Learning

Marie sur Tinée – landslide Plan de Chauvet – rock glacier 



CONCLUSIONS :

✓ SSL able to process continuous seismic data

✓ SSL able to reconstruct and improve existing catalogs

✓ SSL able to find rare events

SSL = synoptic and comprehensive view of a dataset

WIP :
➢ Multistations

➢ Remove the need to transform the data to images

CHALLENGES : 

▪ A global pretrained model for 
seismological data ?

▪ How to apply this to large volume 
(years, nodes, DAS) ? > VRE



Thank you!
Contact : hibert@unistra.fr





DETECTION | CLASSIFICATION

Testing the RF algorithm + Feature in different contexts

Local scale :

▪ Super-Sauze [Provost et al., 2017] – 4 classes, ~900 
eve. Success rate : 90%

▪ Piton de la Fournaise volc. [Maggi et al., 2017; Hibert 
et al., 2017] – 2-8 classes, 13000+ eve. :  90-95+%

▪ La Clapière – 4 classes, ~11100 eve. : 92%

▪ Séchilienne – 4 classes, ~130000 eve. : 91%

▪ Knipovich Ridge [Domel et al., in press] : 87%

Regional scale :

▪ Alaska [Hibert et al., 2019]

▪ Alps : WIP [Groult et al., in prep.] > ANR HighLand

▪ Greenland [Pirot et al., in prep.]

Processing streams of data :

▪ Illgraben/Piz Cengalo [Wenner et al., 2021; Chmiel et 
al., 2021]: 80-90%

▪ DAS [Huynh et al., 2022] : 87%

▪ Super-Sauze  [Rimpot et al, in prep.]



CLASSIFICATION | LANDSLIDES

Taan-Tyndall
Octobre 2015

75 Mm3

Tsunami : 150 meters wave height

Mount La Perouse 
February 2014
30 Mm3

Scientific question : How is climate change impacting landslides 
activity in high latitude/altitude regions of the world ?

> Need for comprehensive catalogues of landslides  



Training Set : 2 classes

Earthquakes :
▪ 290 Earthquakes recorded by the 

Alaskian network (AK) in january 
2016 (M 2.5-7.1)

▪ 3636 HF seismic signals recorded by 
124 stations

Landslides :
▪ 11 landslides (Volume>1Mm3)

▪ 205 HF seismic signals recorded

▪ Events known or seismically 
detected (GCMT project, Ekström et 
al.)

CLASSIFICATION | ALASKA



Algorithm implementation

Tests performed : 100 iterations of training the algorithm with a sub-set of 
the training set and then identification of the rest of the set

Signal Approach :
Identifying one event from one signal

Accuracy : 98%
But high rate of false alarm!

Event Approach :
Identifying one event from the vote 
casted by each signal (+score) 
associated with the event

Accuracy : 99%
Worst case : 1 EQ identified as landslide. 
No landslides missed

CLASSIFICATION | ALASKA



CLASSIFICATION | ALASKA

Application to 22 years of continuous data

▪ HPC implementation : 10h of processing for 240+ stations (~12 months on a 
laptop)

▪ Zone of detection: 20° x 20° - Lat: 48°/68°, Lon: -124°/-144°

▪ 6213 potential landslide detections on more than 1 station, 5087 (82%) landslides 
confirmed by manual inspection of the signals

▪ All of previously known landslides have been detected



CLASSIFICATION – WIP | ALPS

  

ANR HighLand 

Multi-disciplinary : 
▪ Seismology
▪ Remote-Sensing
▪ I.A. 

Instrumental Catalogues :
▪ Date, localization, mass and volume
▪ In short/near real time
▪ Retrospectively over 20 years

 

Groult et al. 
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CLASSIFICATION | GREENLAND

Why study glacier calving in Greenland ?

▪ Indicators of rapid change in the Arctic

▪ Strong impact on the 
dynamics/kinematics of these glaciers

▪ What contribution to ice mass loss and 
sea level rise?

GCMT [Ekström et al.] : first catalogue
1993 – 2013 : 444 Glacial Earthquakes 

Ms > 4.5

Events Ms < 4.5 not detected

Need for a comprehensive catalogue to 
address the quantification of ice sheet mass 

loss

Ekström, Nettles and Abers
(2003), Tsai and Ekström (2007), 
Nettles and Ekström (2010), 
Sergeant et al. (2016)



Training set : 2 classes

Earthquakes :

▪ 400 earthquakes recorded by the GLISN 
network : 1993 to 2013 (Mw 2.5-7.1)

▪ 4042 signals

GEQ :
▪ 444 GEQ (M > 4.5)

▪ 3424 signals

▪ Known events (GCMT project, 
Ekström et al.)

CLASSIFICATION | GREENLAND

Pirot et al. 



Application to the GLISN network on 844 days

▪ 5791 events > 1670 new GEQ 
confirmed manualy 

      = 4x the GCMT Cat.

▪ Events discarded : 758 EQ, possible 
+ GEQ but with signal only on one 
station

CLASSIFICATION | GREENLAND

Pirot et al. 
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SOURCE CHARACTERIZATION | ROCKFALLS

Oso 
22-03-2014

8 Mm3

Force

Velocity

Trajectory

[Hibert et al., 2015]

Limits : Only very large landslides 
=  <1% of events worldwide

▪ LP surface wave inversion (T=40-150s) : Force
▪ Infer from Force : vitesse, acceleration, trajectory and mass 



Barcelonnette

La Valette landslide

Rioux Bourdoux

SOURCE CHARACTERIZATION | ROCKFALLS



Barcelonnette

La Valette Landslide

Rioux Bourdoux torrent

Experiment area

Launch zone

Stop

200 m

SOURCE CHARACTERIZATION | ROCKFALLS



SOURCE CHARACTERIZATION | ROCKFALLS

Trajectory reconstruction :
Manual picking of the impact 
position and time

➢ Precize localisation thanks to 
DEM

From the trajectories :
Velocity, energies, momentum 

(𝑚𝑎𝑠𝑠 × 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦)

[Noël et al., 2022; 
Hibert et al., 2022]



Machine learning prediction of the sources properties :
• Training and testing with features of 400 impacts signals

• Predictive model based on « Random Forests »

• Prediction of the mass and the velocity of the impactors

Results :

Median error on the velocity : 10%
Median error on the mass : 25%

✓ Lower uncertainties compared to 
physical scaling laws

✓ No need for the localization of the 
impact nor of a velocity model

[Noël et al., 2022; Hibert et al., 2022]

SOURCE CHARACTERIZATION | ROCKFALLS
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