

Models for Economic and Human losses caused by earthquakes

Philippe Guéguen

Underlying probabilistic framework for risk assessment

Hazard Module

How often? How big? Where?

Insurance prolicies: used by private individuals and asset owners to protect their assets against financial damage caused by earthquakes in exchange of a regular and known payment called **premium**.

Cat bonds: used by insurance companies, governments or financial institutions to transfer part, or the full financial risk, to the capital market (high rates of return /low time to maturity (typically, 3 to 5 years)):

Cat bond price=Interest rate model, pay-off model, aggregate loss model

Example operational (real-time) system: M7.8 Central Turkey - 06/02/2023

PAGER (USGS)

Fatalities

P(0.35) 10 000 /100 000 P(0.87) 1 000 >100 000

09/2023: 59 000 fatalities

Economic USD (million)

P(0.35) 10 000 /100 000 P(0.91) 1 000 >100 000

09/2023: 40 \$bn

Estimated Population Exposed to Earthquake Shaking

ESTIMATED POPULATION EXPOSURE (k=x1000) ESTIMATED MODIFIED MERCALLI INTENSITY		-*	12,744k*	240,897k	22,861k	12,841k	7,574k	1,191k	657k	0
		I	11-111	IV	V	VI	VII	VIII	IX	Х+
PERCEIVED SHAKING		Not felt	Weak	Light	Moderate	Strong	Very Strong	Severe	Violent	Extreme
POTENTIAL DAMAGE	Resistant Structures	None	None	None	V. Light	Light	Moderate	Mod./Heavy	Heavy	V. Heavy
	Vulnerable Structures	None	None	None	Light	Moderate	Mod./Heavy	Heavy	V. Heavy	V. Heavy

Population Exposure

Structures Overall, the population in this region resides in structures that are extremely vulnerable to earthquake shaking, though some resistant structures exist. The predominant vulnerable building types are unreinforced brick masonry and low-rise nonductile concrete frame with infill construction.

Historical Earthquakes

Date (UTC)	Dist. (km)	Mag.	Max MMI(#)	Shaking Deaths
2001-06-25	72	5.4	V(26k)	0
1992-03-13	361	6.6	IX(151k)	498
1975-09-06	359	6.7	VIII(1k)	2k

secondary hazards such as landslides that might have contributed to losses.

Selected City Exposure from GeoNames.org

PAGER content is automatically generated, and only considers losses due to structural dar Limitations of input data, shaking estimates, and loss models may add uncertainty. https://earthquake.usgs.gov/earthquakes/eventpage/us6000jllz#pager

Event ID: us6000jllz

Cost of some earthquake disasters

Pothon et al., NHESS, 2019 - Mistry, Hernandez, Guéguen, Lombardi, Risk Analysis 2024

Protection gap: the cost of catastrophe to society

Reasons of low insurance penetration are **uncertainties** when pricing insurance policies and cat bonds, **low risk perception**, household and income **demographics and affordability**

Global earthquakes losses

LEQ445 flat file (Dollet and Guéguen, 2022): all earthquakes

Main issues

How to we get an early and reliable estimate of losses? **A la GMM** Were the observed losses expected? **A la GMM residual distribution** Is this event a one-off in terms of losses? **A la LPHC definition** What are the annual occurrence of losses? **A la GR model - catalogue completude**

Losses database - LEQ445 from EM-DAT, CATDAT, Desinventar

Hazard module

M,lat-lon,Depth:->Epicentral intensity Exposed area (MMI>V) from USGS Shake-Map

Exposure module - Adjustment to a reference date 2016

Social model: Exposed population at the time of the earthquake from Global Urban Settlement (European Commission 2018) + UN Country population growth

Economic model: Exposed GDP : GDP per capita at the time of the earthquake + Consumer Price Index conversion

Risk module

Average Annual Losses **AAL** - Non-stationary Poissonian process (population and economy global growth)

Global earthquakes losses

LEQ445 flat file (Dollet and Guéguen, 2022): all earthquakes at a glance

Losses

76% of M5.6-7.3 Economic: 46% Casualties: 39%

Statistical analysis (Kurtosis, skewness)

Moderate earthquakes: majority of cumulative losses

Strong earthquakes: significant losses

Mitigation

Losses increase: exposure

Losses/exposure decrease:

->Global improvement of seismic design (Gülkkan and Reitherman, 2014) ->Efficay of UN mitigation programme (Shreve and Kelman, 2014; Nations Unies, 2015)

1999 versus 2023 Turkish earthquake losses

2023

USGS - Macroseismic Intensity: VIII-IX Global Human Settlement - European Commission

Exposed population 2023: GDP per capita:

Losses 2023 \$US: +34bn\$ Fatalities: 59,259 (Turkey+Syria) 48,806,841 (56% of the total Turkish population) 9,660 \$ (2022)

1999-Izmit earthquake

Macroseismic Intensity: IX Exposed population 1999: 21,654,157

Losses 2016: **26bn\$** (CPI conversion) Fatalities: **17,242**

PERCENTED Notfelt Weak Light Moderate Strong Verystrong Severe Violent Extreme PATRING none none none Verylight Light Moderate Moderate/Heavy Heavy VeryHeavy

Turkish earthquakes (non exhaus.)

LEQ445 flat file (Dollet and Guéguen, 2022)

Date	Mw	lo	\$L (2016) 10º \$US	GDPc \$US	GDPexp MMI>VI 10 ⁶ \$US	POPexp MMI>VI 10 ⁶	F
1970	7.4	IX	574	4 787	38 555	8	1 086
1975	6.6	VII-VIII	206	5 633	22 923	4	2 367
1976	7.0	VIII-IX	281	6 081	67 606	11	4 227
1986	6.0	VII	45	6 731	42 138	6	13
1992	6.6	VIII	1 166	7 861	84 748	11	653
1995	6.4	VIII	334	8 295	80 208	10	94
1998	6.2	VIII	985	9 349	481 098	51	145
1999	7.6	IX	25 669	8 893	192 577	22	17 242
1999	7.1	VIII-IX	1 313	8 893	357 399	40	816
2003	6.3	VIII-IX	168	9 448	45 809	5	179
2010	6.1	VII-VIII	35	12 102	156 659	13	45
2011	5.8	VI-VII	287	13 249	75 262	7	2
2011	7.2	VIII	1 235	13 249	808 452	61	614
2023	7.8	VIII-IX	34 000	9 660	471 488	49	59 259
	Total 66 298						86 741
2023 contrib.			51 %				68 %

Source: 09/2023

Turkish earthquakes (non exhaus.) LEQ445 flat file (Dollet and Guéguen, 2022)

Earthquake-resistant design failure: 1999, 2003, 2011, 2023

Turkish earthquakes

Pattern of the seismic damage at urban scales: the Turkish paradox

<image>

2023

Full earthquake sequences mainshock-aftershock sequence

Cousin et al., 2012 - Five times more losses due to aftershocks Christchurch earthquake

Shokrabadi and Burton, 2019 - The aftershock-induced losses during the same period (Los Angeles) were estimated at approximately 30% of the losses due to the mainshock.

In Turkey's insurance contracts, the earthquake event definition is usually governed by a 72 hours clause. However, separating losses from different events ideally requires visits from loss adjusters between occurrences. In practice, this is rarely possible within a few days or even weeks. This situation introduces uncertainty in determining the actual event loss.

Central Italy Time-dependent PSHA

Aggregare loss model (TI-model)

Catastrophe event process: λ

Poisson process

calibrated using homogenous

Catastrophe severity process:

for time-independent loss

assessment (Monte Carlo)

cumulative distribution function

Aggregare loss model (TD-model)

Catastrophe event process: λ

Catastrophe severity process:

(Markov Chain Monte Carlo)

cumulative distribution function for

time-dependent loss assessment

calibrated using ETAS model

Central Italy Time-dependent PSHA Risk module

Mistry, Hernandez, Guéguen, et al. 2024 - Risk Analysis

Models for Economic and Human losses caused by earthquakes

Take-away messages

- Moderate-size earthquakes contribute to about 40% of the total losses
- A huge benefit (1/3) of seismic loss reduction policy: a decrease of the losses (economic and social) to exposure model ratio
- Central Italy: Aftershocks sequence contributes to about 2/3 of the total AAL

Outlooks

- Testing ESRM20 model in France: exposure model
- Improvement of the damage/loss models: between-event, within-event, host-to-target...
- 2023 Turkish aftershocks sequence: ETAS for a finit-fault

Merci de votre attention